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1. Introdyction. Let W(t), t > 0, W(0) = 0 be a standard Wiener
process, independent of N(t), t > 0, N(0) = 0, a Poisson process with
(constant) unit jumps, and EN(t) = \t, t > 0. Let their sigma fields be
F(t) = g(W(s),0 < s < t) and G(t) = o(N(s),0 < s < t), respectively. Let

X(t) be a stochastic process that (for % ] xt) satisfies the Ito stochastic

differential equation
(1.1) xt(:) = yg(X(t))de + dw(e) + dN(t)

X@Q) = x ,

where x 1is real, aad u(X(t)) is measurable with respect to o(F(t) U G(t))
(i.e. u 1is non-anticipative) and satisfies, for A, B constants, B > 0,

and JA} <8,
(1.2) Ju-A] <B

for all 0 <t <T, 0<T < » a constant. {ne cost function for a given
u satisfying (1.2) is, for @ > 0 a constant, and @(x) a symmetric positive,
increasing on the positive x~axis function of polynomial growth as x —» =,

that Ly, for some 8§ > 0,

(1.3) qp(x)/]:vc[p -0 as ’xl - @, p(x) ==, and (pxx(x)- ®as X - o,




(1.4)  Jw) = jI e PE(p(x(s)) + lu(x(s)])as.
0
Another cost function to be considered is
(1.5) K(u) = fe'“’z(q;(xm) + u2<x(8)))ds.
O .

This latter cost function will be briefly treated in section 4.
The object is to characterize the optimal u for which J or K

is minimized, respectively. The cases T < @ and T = « are treated

separately. The existence of an optimal u depends on assumptions about
the asymptotic behavior of certain partial differential-difference equ.i-
ations. The wmethod employs a suitable Bellman equation, a maxioum
principle for parabolic partial differential-difference equations and

the Ito rule. The method follows [4].

2. Finite Interval Control.

Let T < @, Define, for 0 <t < T,

(2.1) V = V(x,£) = inf re"”z(w(xz(s)) + Ju(x(s)) ds
tu-A\<B 0

and V(x,0) = x .

+h +h
Weiting Jr: = Jh + _r - r , heuristic arguments (or see
0 a h t

{2}, pp. 179-180) yield a Bellman equation (where V = V(x,t),

2
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Define
(B-A)(1-a)  if a>1
(2.3) g(a) = inf (ua+ju]) = 0 if lal <1
u-a|<B

Then (2.2), (2.3) become
1
2.4) o+ 8V ) +3V - aV-V, + A(V(x+L,c)-V) = 0.
On heuristic grounds, a solution to (2.4) is sought such that for

functions bl(t) < bz(t); 0 <t <T to be determined,

1
(2.5a) @+ (A+ﬂ)(1+vx) + 3 Vxx-aV-Vt

+ A(V(x+1,E)~V) = 0

3 for x < b, (), -
,, l - - R -

3 (2.5b) @+ 3V _ - aV-V, + A(V(x+l,E)-V) = 0
: for bl(t) <X <L bz(c),

and

3 1 = ay. W =
3 (2.5¢) @+ (B-A)(1-V) + 3V _ - aV-V_+ x\(V(xtl,t)-V) = 0

for x> bz(t).
The functions bl(t), bz(t) are to be obtained from these matching

conditions, where for 0 < t < T,

V=V in (2.5a), V=aVv

. in (2.5b), V&V

in (2.5¢):

2 3

v (b (€),8) = V(b (E),8)

2.6)
vz(bz(:),:) = V3(b2(:),c)

LAl



V1, x®r(EE) = V) (b (e),E) = oy

Vz,x(bz(t)’t) - V3’x(bz(t),t) = +]1.

(2.7) Vl(x,O) = Vz(x,O) = Va(x,O) = Q.
(2.7a) v3,m(b2(t)’t) >0

(2.7b) v'z’xx(bl(c),c) > 0.

For R a constant, denote
(2.8) J(x,t,R) = J:e-asrﬁ(Q(R3+W(s)+ﬂ(s)+x)+|R|jds.
O -

1t may be verified that J(x,t,A+B) is a particular solution to
(2.5a), that J(x,t,0) is a partiCuiar solution to (2.3b) and that
J(x,t,A-B) is a particular solution to (2.5¢). The solutions to (2.5a-c)

will be shown to follow if this condition holds.

N .
[ X e,

Assumption 1. There is a non-zero solution, for each ¢t,

A Hl(x,t) with Hl(x,O) = 0 to (H=H(x,t))

{
j (2.9) (A+B)(1HL) + % H - oH-H + MH(x+L,t)-H) = 0

such that

H (x,8) = 0™
(2.10) +x
Hl xx(x,t) = 0(e 7))

for some r > 0, £>0, as X = - o,

Bt RN N

Also, there is a non-zero solution Hz(x,t) with Hz(x,o) = 0 to

2 e e e ———— e .-

1
- H - - - -
(2.11) 3 aH Ht + A(H(x+1,t)-H) 0.
Further, there is a non-zero solution H3(x,C) ~+ith H3(x.0) = 0

to

1
(2.12) (3-A)(1-Hx) + 7 Hxx - aH-Ht + A(H(x+1,t)-H) = O




Lo

. ‘ 5

such that

(2.13)  Hy(x,8) = 0(e™)
Hy e (6,8) = 0(e™%)

for some k > 0, ¢ > 0, all t, as X =+ o,

If the above Assumption 1 holds then let
(2.14a) Vl(x,t).a J(x,t,A+8) + Hl(x,t)
(2.14b) Vz(x,t) = J(x,t,0) +.H2(x,t)
(2.14c) V3(x,t) = J(x,t,A-B) + H3(x,t).

Assumption 2. The Vz(x,t), 1 < £ <3 of (2.14a~c) which satisfy

(2.5a-c) respectively, aand conditions (2.6), (2.7), determine bl(t) < bz(t).

This motivates

Theorem 1. If the conditions of section 2 and Assumptions 1 and 2

g

hold for 0 < t < T < =, then the optimal u may be expressed in closed

0

Il

loop form as
A+8 if xo(t).s bl(T-C)
(2.13) uo(xo(:)) = 0 it bl('r-t) < Xo(c) < bz(‘r-c)
A-B 1if xo(:) _>_b2(‘1'-c)
where
(2.16) dxo(c) - uokxo(t))dt + dW(e) + an(e)
XO(O) = x,

Proof. Lec D = Vxx (omitting (x,t) arguments),
]

Claim. D >0 all (x,t).

Proof of Claim. From (2.4), omitting (x,t),let




. ’ g . 6

(2.17)  L(D) = g() + %Dxx-(a+X)D‘Dt = -q -AD(xH).

From (1.3), the conditions on ¢, and (2.8) - (2.14), it follows

that, for each ¢t,

(2.18) D> 0 as |x| =~ =.

Suppose that there is an r > b, and a Y, 0 <y < 1 for fixed ¢t, such

2
that
(2.19) pD(x)< O b2 <r-y<x<r
(2.19a) D(x) = 0
(2.20) D(x) > 0, x> r.

We now obtain a contradiction to (2.19).

From (1.3), Prex > 0, hence (2.17) and (2.20) imply that
L(D) <0, x>r-1.

It follows frop a maximum principle (Lemma l(after multiplying
by -1)[1], p. 34) that D cannoé have a negative minimum for the fixed
t, for x > r-y. From this and (2.7a), (2.18),(2.20), if follows that if D
were negative for any x > r#, it would have a negative minimum, which
is not allowed by the maximum principle. Hence D > 0 for x > r-y,

contradicting (2.19) and completing the claim for x > bz.

For x < b,,, a similar argument using (2.7b), (2.18) yields that D(x) > 0

2’
for b2-6 < x < b2 for appropriate 0 < 8 < 1. Continuing the argument by
iteration yields that D(x) > 0 all x, for each t.
The claim implies that Vx is increasing in x for each t and
hence that (2.5)-(2.14) indeed yields a solution to the Bellman equation
2.4).

To show 4 is optimal, define, for 0 <t < T

(2.21)  K(X(t),t) = V(X(t),T-t)e =F,




Noting that K(X(0),0) = V(x,T) and K(X(T),T) = 0, the Ito rule
([2],pp.125-126) applied to (2.21) for an admissible u and its corres-
ponding X(t) yields, upon integrating from 0 to T, and adding and sub-

tracting appropriate terms, that

(2.22) jI e % (@(X(s)) + [u(X(s))|)ds - V(x,T) =
0

Jl':e'“(cp(xm) + g(V_(X(s),T-5)) + £ V_ (X(s),T-3)
-aV(X(s),T-s) - V_(X(s),T-3))ds

+ JIe-asV(X(s),T-s)dN(s)
0

+ er-asv (X(s) ,T-s)dW(s)
0 X

+ j':e‘“’(u(X(s))vx(X(s>,r-s) + Ju(X(s)|-g(V, (X(s),T-5)))ds.

The fourth integral on the right side of (2.22) is non-negative.
Upon taking expectations in (2.22), the third integral on the right
becomes zero.

On combining the first and second integrals on the right after
taking expectations, and suppressing the X(s) and the (X(s),T-s)

arguments, one obtains from (2.22),

(2.23) jxe‘“‘x(¢ +|u])ds - v(x,T) =
0

r: e E(@E(V) + 3V, - a¥-V, + A(V(E(s)H,T-5)-V))ds

jze‘"’z(uvx+\u|-g(vx))ds.




The first integral on the right of (2.23) is zero by (2.4) and the
second integral on the right is non-negative by definition of g in

(2.3), with equality if u, . Hence from (2.23),
(2.24) fe’“‘r.(w julds > v(x,T)
0

with equality if u=u, showing that U, is optimal. This completes

Theorenm 1.

3. Infinite Interval Control. Assume that the conditions of section 2

hold and let T = » , The cost function is then
G 3e) = [ e (@X(s)) + Ju(x(s))])as
4]

which is finite by (1.3) for admissible u.

Define V = V(x) as

(3.2) V(x) = inf J' TOSE(@(X(s)) + |u(X(s)])ds
[u-a[<B 0

where X(0) = x, a constant.

]
By writing Jm = Jh + I , heuristic arguments (see(2], pp. 179-180),
0 0 h

yield a Bellman equation, using the abbreviated arguments im (2.2),

(3.3) =(x) +  inf (uv +| D+ -v - aV + A(V(xHl)-V) = 0,
|u-A|<B

TGOS YRR T TS gy - g
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As in (2.3), (2.4),

1
vax

(3.4)  @(x) + g(V) + - aV + A(V(x+L)=V) = 0

On heuristic grounds, a solution to (3.4) is sought such that for

aumbers bl < b2 to be determined below, omitting x arguments,

(3.52) o+ (&+B)(1H ) + % V. - a¥ + A(V(xH)-V) = 0

for x Sbl

(3.56) @+ 3V _ =V + A(V(xHL)-V) = 0

for b1<x<b

2 E
(3.5¢) @+ (B-A)A-V) + -21- V- aV + A(V(xH)-V) = 0
for x> bz.

The bl < b2 are to be determined from the follo}dng matching con-

ditions, where V =V, in (3.5a), V=V

1 in (3.5b) and V = V_ in (3.5¢).

2 3
Vi) =0
Va(b) = V3(b,)

(3.6) VB =V, )= -1
vz’x(bz) = V3,x(b2)" +1.

(3.6a) V3 ex(bp) 2 0

Vz'xx(bl) > 0.

For R a constant, denote

3.7 J(x,R) = Joe-asE(¢(Rs+W(s)+N(s)-hc)+[Rl)ds.

It may be verified that J(x,A+B) is a particular solution to (3.5a),

that Jf(x.?) :s a particular solution to (3.5b) and J(x,A-B) is a
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particular solution to (3.5¢).

Assumption 3. There is a non-zero solution Hl(x) to (omitting x

argument)

(3.8)  (AHB)(LHL) + % H_ - ofl + \(H(eH)-H) = 0
such that

(3.9) H (o) = 0(e™%)

Xy

Hl,xx(x) a 0(e

for some u >0, v>0, as X = - =,

There is a non-zero solution Hz(x) to

R - od + A(H(x+1)-H) = 0.

(3.10) o

N

There is a non-zero solution H3(x) to

(3.11)  (B-A)(1-H ) + -;- B - ofl + A\(H(eH)-H) = 0

such that

(3.12) Hy(x) = 0(e™ ™)

Hy _(x) = o(e”P%)

»

for some p >0, q >0 as X =+ @,

Now one sets

(3.13a) V(%) = J(x,A48) + H, (x)

(3.13%) Vz(x) = J(x,0) + Hz(x)

(3.13¢) V3(x) = J(x,A-B) + H3(x) .




Assumption &.

(3.14) The bl < b2 are determined by the Vz(x), 1l<2<£3
of (3.13 a-c).
Theorem 2. Under the assumptions of this section, the optimal

u=u, may be expressed as

1
A48 if X (£) < by
(3.15) u (X () = 0 if b, < X (£) <b,

A-B if xl(c) 2b,

where
(3.16) dJH(c) = “I(H(t))d: + dw(t) + daN(t)
XI(O) = X,

Proof. Let D = vxx’ suppressing the x-arguments.

Claim. D >0 all «x.

Proof of Claim. From (3.4)

1
(3.17) K(D) =g (D) + 3D -(a)D = -q  -AD(x+1).
By an argument identical to that given in the pooof of Theorem 1,

using the appropriate maximum principle ([l], Theorem 18, p. 53), it

follows that D(x) > 0 for all x.

The claim implies that Vx is increasing in x and hence that
(3.5)-(3.14) yields a solution to (3.4).

To show uy is optimal, define, for t > 0,

(3.18) R(X(E)) = V(X(t))e *F.




Noting that R(0) = V(x), the Ito rule ([2], pp. 125-126) applied to
R(X(t)) followed by integration and adding and subtracting appropriate

; terms yields (arguments on the right side not indicated are X(s))

(3.19) re-"s(q)(X(s))'*' lu(x(s)))ds + V(R(E))e ¥ -V (x) =
0
J:e""(cp+s(vx) +2V_-aV)ds + J:e-”"‘m(’)

+ f: e"”vxdW(a) + f:e‘“’(q,-&- Ju] - 8(V_))ds.

The fourth integral on the right is non-negative by the definition of

g(x). Upon taking expectations in (3.19), the third integral on the
right vanishes, and the first and second terms on the right may be

combined to obtain (again the arguments not indicated are X(s))

(3.20) re-asE(cp-I-]ul)ds + e BV (R(L))-V(x) =
0

Jte-as}:«p-l- g(Vx) +% Vxx-aV + A(V(X(s)+1)-V))ds
0

+ j:e-usﬁ(uvx + ’ul - g(Vx))ds.
0

By (3.4), the first integral on the right of (3.20) is zero, and the
second integral on the right is non-negative by the definition of g.
: ; From (1.3), (3.5)-(3.14), and the bounds on |u|, it follows that there

is a constant L > 0 such that for all ¢,

(3.21) E(V(X(t)))e % < Le™°"

letting t = o in (3.20), and using (3.21) one obtains




(3.22) f e “E(o+ Ju))ds > V(x)
0

and  (3.22) J:e-asE(cp(xl(s)) + Juy (X (0)])ds = V()

so that (3.22) , (3.23) yield that u, is optimal, completing Theorem 2,

1

4, Alternate Cost Function. The same models as in sections 1-3 with

certain other cost functions may be treated in a similar way. For
example, the cost function (1.5) yields, for T < », a Bellman equation

(the (x,t) arguments are omitted)

1
(4.1) @+ h(V) + 3V _ ~aV-V, +A(V(xH,t)-V) = 0

where

[ (A+B)(atA+B) if - 3> A48

2
(4.2) h(a) = inf (ua+u2) = - 37: if A-B<- %<A+B
u-AlSB
| (-B)(atA-B) 1f - ;SA-B
and from (4.2),
a a a .
(4.3) u = A-B if ~ '2-<A-B; U= - -z-if A-B < - i’(A-l-B,

u = A+B 1if -§->A+n.

One seeks a solution to (4.1) of the form

1
(b.5a) o+ (A+B) (Vx +A+B) + 3 Vxx- aV-Vt-l- A(V(x+L;t)-V) = 0

if x < kl(t)

.40) -2V +3

2 “Vxx - aV--Vt + A(V(x+l,t)~V) = O

if kl(t) <x < kz(t)

~—
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(4.40) @+ A-B)(V +A-B)+ 1 V- V=Y, + A(V(rH,E) V) = 0

1f x> kz(t).

The k,(t), k,(t) are to be determined by, for V =V, in (4.4a),

1
E V=V, in (4.4b), V 3V, in (4.4¢), for 0 gt < T,

Q RO NY - Vz(kl(t).t)
y
| v, (k, (£),t) =- V3(k2(t).t)
.5)
vl,x(kl(t)’t) - vz’x(kl(:),:) = - 2(A+B)
vz’x(kz(:),:) - V3’x(kz(c),t:) = -2(A-B).
and

(4.6) Vl(x,O) - Vz(x,O) = V3(x,0) =0 all x.

(4.6a) V(K1 (8),8) 2 0

V3 o (ka(8) 8

v
o

The maximum principle ({1], Lemma 1 p. 34) may be applied to (4.4a),
(4.4c) as in Theorem 1, as these are linear in the V’x term. Similarly,
for R a constant, if one defines

(4.7) L(x,t,R) = fe‘“%(¢<nsW(s>m(s)ﬂ)ﬂz)ds .
o .

then L(x,A+B) is a particular solution to (4.4a) and L(x,A-B) is a

particular solution to (4.4c). Adding an assumption similar to




— —— I e e e e

15 ﬂ

assumptions 1 and 2 in section 2, and on the boundedness of solutions
to (4.4b), one may obtain the optimal ug for this problem implicitly
in the form
[ a+s £ X,() gk, (T-t)

(4.8) u3(15(t).=)-< -%Vx(ﬁ(c),c) if kl('l‘-t)~<x3(t)<.k2(‘1'-t)

. A-B if xact) Zkz('r°t) ’

T TR —

where

dx3(t) = u3(x3(:))dt + dN(t) + dw(t),

using arguments as in Theorem 1.

The case T = » parallels that of section 3. The Bellman equation

is, for V = V(x),
. 1
(4.9) tp"'h("x) + 2 Ve @V + A(V(xHL)-V) = 0
and a solution to (4.9) is sought of the form
(4.10a) g+ (A+B) (V_+A+B) + -;- V_a¥ + A(V(x+)-V) =.0

for x<£1

@.108) =7V %) + 3 v_- oV + A (xH)-T) = 0
for L <x< g,

and

(6.10¢) o + (A-B) (V +A-B) + -;- V- aV + A(V(xH)~V) = 0

for x > !2

wvhere the constants ,l.1 < 17 are to be determined from the matching

conditions where V = V_ in (4.10a2), V 3V, in (4.10b), V =2V, in (4.10¢c)

2 3

1




*
“ ‘.

16
Vi) = (e

Vplly) = Vy(ky)

(%.12)
Vl’x(zl) = Vz’x(l.l) = -2(A+B)
V2,x{l2) = V3 (&) = -2(a-B).
(4.11a) Vé’xx(zl) >0
V3 ox2) 2 0.

If
(4.12) L(x,R) afe“”’(z(q,(Rs-m(s)-o-N(s)-bx)mz)ds,
- 0

it may be shown that L(x,A+B) is a particular solution to (4.10a) and

L(x,A-B) is a particular solution to (4.10c). Adding an appropriate
assumption similar to that in section 3, and on the boundedness of

solutions to (4.10b), the optimal u, is implicitly expressed as
[
A+B i£ Xa(:) < 21

(4.13) (%, (£)) = ‘%“’x(xa("” i 4 <X (D) <h

| A-B if xl.(t) 2L

where

‘"‘4(‘) = “a(xa(:))dt + dw(t) + dN(t)
XI.(O) -x .,

5. Additional Constraints.

Certain additional constraints may be incorporated and treated

by those methods. For example, in the case T < = of section 2, the added

constraint




(5.1) E(q(X(a)) + |u(X(a))|) = c,

where a 1is a constant, 0 <a < T and C > 0, may be incorporated by
adding the condition

v, (x,t) = o %3¢

t=3
to the conditions (2.6),(2.7), and proceeding as before. See [3] for

another approach.

6. Extensions.
The method applies to a variant of the stochastic differential

equation (1.1). Let, for B # 0 a constant,

6.1) xt(c) a (BX(t)+u(X(t))dt + aW(c)+HdN(t),

X(0) = x,

with control u(X(t)) satisfying (1.2) as before. Similarly, the cost
function J(u) is as in (1.4).
The appropriate Bellman equation for T < = is, where g 1is as

in (2.3),
g (6.2) 0 = x4V 45(V )+ 3 V-V #A(V(x+)-V)=aV.

A solution of the form (2.5)-(2.7) is sought as before. To obtain

a particular solution to, e.g., the Bellman equation.

1 .
(6.3) 0 = @(x)+xV_+(A+B) (14+V )+ 3V -aVoV

A (V(x+l,t)-V) = 0,




denote
(6.4)  Y(t) = e Ptx(e).
Then

(6.5) dy(e) = e PEa+m)dr + e Ptaw(e)
+ e Ptan(e)

Hence, integrating (6.5)

(6.6)  ¥(t) = x + J"e""ams)
| 0
+ _r."’dN(s) + (A+8) re"”ds
0 0
or
, s
3 6.7) X(t) = xePt+ @%B-z(e”‘-n + | P E3agee)
“0

t
+ J ep(c-’)dn(s).
0

It may now be verified that

(6.8) J(x,t,A+3) = E J:(¢(xe”‘+ &;3)@"-1)4- re““’)aw(s)
0

+ r.’“")du(s)) + (A+8))ds
0

is a particular solution to (6.3). The rest of the construction and

matching and initial conditions and proofs are as in section 2.

. .
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